Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Cell Biochem Funct ; 41(8): 1093-1105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38018878

RESUMO

One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme ß-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.


Assuntos
Gangliosidose GM1 , Adulto , Animais , Recém-Nascido , Humanos , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Mutação , Mutação de Sentido Incorreto , Neurônios , Terapia Genética
2.
PLoS One ; 18(11): e0294437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019733

RESUMO

Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase ß-galactosidase (ß-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) ß-Gal and four disease-related ß-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing ß-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Animais , Cães , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , 1-Desoxinojirimicina/farmacologia , beta-Galactosidase/metabolismo
3.
J Lipid Res ; 64(12): 100463, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871851

RESUMO

GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes lysosomal ß-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residual ß-galactosidase activity primarily determining the clinical course. Glb1 null mouse models, which completely lack ß-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generated Glb1/Neu3 double KO (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia than Glb1 KO mice. Glb1/Neu3 DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared with Glb1 KO mice, indicating that NEU3 mediated GM1 ganglioside to GA1 glycolipid conversion in Glb1 KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced in Glb1/Neu3 DKO mice compared with Glb1 KO mice. Mouse NEU3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight NEU3's role in ameliorating the consequences of Glb1 deletion in mice, provide insights into NEU3's differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.


Assuntos
Gangliosidose GM1 , Animais , Humanos , Camundongos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/uso terapêutico , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M1)/uso terapêutico , Gangliosidose GM1/genética , Glicolipídeos , Neuraminidase/genética , Neuraminidase/uso terapêutico
4.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37724332

RESUMO

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Assuntos
Gangliosidose GM1 , Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose IV , Humanos , beta-Galactosidase/metabolismo , Galactosilceramidase
6.
Mol Genet Metab ; 140(1-2): 107632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37407323

RESUMO

Measurement of enzymatic activity in newborn dried blood spots (DBS) is the preferred first-tier method in newborn screening (NBS) for mucopolysaccharidoses (MPSs). Our previous publications on glycosaminoglycan (GAG) biomarker levels in DBS for mucopolysaccharidosis type 1 (MPS-I) and MPS-II demonstrated that second-tier GAG biomarker analysis can dramatically reduce the false positive rate in NBS. In the present study, we evaluate two methods for measuring GAG biomarkers in seven MPS types and GM1 gangliosidosis. We obtained newborn DBS from patients with MPS-IIIA-D, -IVA, -VI, -VII, and GM1 gangliosidosis. These samples were analyzed via two GAG mass spectrometry methods: (1) The internal disaccharide biomarker method; (2) The endogenous non-reducing end (NRE) biomarker method. This study supports the use of second-tier GAG analysis of newborn DBS by the endogenous NRE biomarker method, as part of NBS to reduce the false positive rate.


Assuntos
Gangliosidose GM1 , Mucopolissacaridoses , Recém-Nascido , Humanos , Glicosaminoglicanos , Triagem Neonatal/métodos , Dissacarídeos , Espectrometria de Massas em Tandem/métodos , Mucopolissacaridoses/diagnóstico , Biomarcadores
7.
EBioMedicine ; 92: 104627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267847

RESUMO

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Assuntos
Gangliosidose GM1 , Doenças Neurodegenerativas , Animais , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Gangliosidose GM1/patologia , Doenças Neurodegenerativas/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Terapia Genética
8.
J Inherit Metab Dis ; 46(5): 972-981, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381921

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder associated with ß-galactosidase enzyme deficiency. There are three types of GM1 gangliosidosis based on age of symptom onset, which correlate with disease severity. In 2019, we performed a retrospective multicentric study including all patients diagnosed with GM1 gangliosidosis in France since 1998. We had access to data for 61 of the 88 patients diagnosed between 1998 and 2019. There were 41 patients with type 1 (symptom onset ≤6 months), 11 with type 2a (symptom onset from 7 months to 2 years), 5 with type 2b (symptom onset from 2 to 3 years), and 4 with type 3 (symptom onset >3 years). The estimated incidence in France was 1/210000. In patients with type 1, the first symptoms were hypotonia (26/41, 63%), dyspnea (7/41, 17%), and nystagmus (6/41, 15%), whereas in patients with type 2a, these were psychomotor regression (9/11, 82%) and seizures (3/11, 27%). In types 2b and 3, the initial symptoms were mild, such as speech difficulties, school difficulties, and progressive psychomotor regression. Hypotonia was observed in all patients, except type 3. The mean overall survival was 23 months (95% confidence interval [CI]: 7, 39) for type 1 and 9.1 years (95% CI: 4.5, 13.5) for type 2a. To the best of our knowledge, this is one of the largest historical cohorts reported, which provides important information on the evolution of all types of GM1 gangliosidosis. These data could be used as a historical cohort in studies assessing potential therapies for this rare genetic disease.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Humanos , Gangliosidose GM1/epidemiologia , Gangliosidose GM1/genética , Gangliosidose GM1/diagnóstico , beta-Galactosidase , Estudos Retrospectivos , Hipotonia Muscular
9.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298512

RESUMO

GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.


Assuntos
Gangliosídeo G(M1) , Gangliosidose GM1 , Humanos , Gangliosídeo G(M1)/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Glicoesfingolipídeos/metabolismo
11.
J Pediatr Endocrinol Metab ; 36(6): 602-607, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042746

RESUMO

OBJECTIVES: GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder caused by beta-galactosidase deficiency encoded by GLB1. It is mainly characterized by progressive neurodegeneration due to accumulation of glycosphingolipids in central nervous system and classified into 3 forms according to the age of onset and severity of symptoms. CASE PRESENTATION: In this study, we described the demographic, clinical, molecular, biochemical characteristics of 4 patients from 3 unrelated families diagnosed with GM1-gangliosidosis. The ages of the patients included in the study were between 5 months and 10 years old and all were male. All families had third degree consanguinity. Two of the patients were diagnosed as infantile type and the other two siblings were diagnosed as juvenile type. Infantile type patients had coarse facial appearance, developmental delay and early neurodegeneration. Juvenile type patients had mild motor and cognitive developmental delays at the beginning, but they did not have coarse facial features. Cherry-red macula and cardiac involvement were detected in only one infantile patient, while hepatomegaly was present in both infantile type patients. Beta galactosidase enzyme levels were extremely low in all patients and two novel variants were identified in GLB1. CONCLUSIONS: In this study, we identified four patients with different phenotypic features and two new mutations. GM1 gangliosidosis shows clinical heterogeneity according to age of onset. In some patients, developmental delay can be seen before the loss of gained functions. Therefore, this disorder should be kept in mind in patients with developmental delay who have not yet started neurodegeneration. There is no curative treatment for the disease yet, but ongoing gene therapy studies are promising for curing the disease in the future.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Humanos , Masculino , Feminino , Gangliosidose GM1/genética , Gangliosidose GM1/diagnóstico , Gangliosídeo G(M1) , Mutação
12.
CRISPR J ; 6(1): 17-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629845

RESUMO

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Assuntos
Gangliosidose GM1 , Humanos , Gangliosidose GM1/terapia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Alelos
13.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709532

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Masculino , Feminino , Animais , Camundongos , Gangliosidose GM1/genética , Camundongos Knockout , beta-Galactosidase/genética , Doenças por Armazenamento dos Lisossomos/genética , Éxons
14.
Am J Med Genet A ; 191(2): 408-423, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36541412

RESUMO

GM1-gangliosidosis (GM1) is a rare neurodegenerative disorder leading to early mortality and causing progressive decline of physical skills and cerebral functioning. No approved treatment for GM1 exists. In this study-the first to explore priorities of parents of subjects with pediatric onset forms of GM1-we address a crucial gap by characterizing symptoms most critical to caregivers of children with GM1 to treat. Our two-part, mixed-methods approach began with focus groups, followed by interviews with a distinct set of parents. Interviews included a prioritization activity that used best-worst scaling. Quantitative data were analyzed descriptively. Qualitative data were analyzed using thematic analysis and rapid analysis process. Parents prioritized the symptoms they believed would increase their child's lifespan and improve their perceived quality of life (QoL); these symptoms focused on communicating wants/needs, preventing pain/discomfort, getting around and moving one's body, and enhancing eating/feeding. Although lifespan was highly valued, almost all parents would not desire a longer lifespan without acceptable child QoL. Parents indicated high caregiver burden and progressive reduction in QoL for children with GM1. This novel study of caregiver priorities identified important symptoms for endpoints' selection in patient-focused drug development in the context of high disease impact and unmet treatment needs.


Assuntos
Cuidadores , Gangliosidose GM1 , Criança , Humanos , Qualidade de Vida , Gangliosídeo G(M1) , Pais , Doenças Raras
15.
Am J Med Genet A ; 191(3): 711-717, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461157

RESUMO

Natural history studies of pediatric rare neurometabolic diseases are important to understand disease pathophysiology and to inform clinical trial outcome measures. Some data collections require sedation given participants' age and neurocognitive impairment. To evaluate the safety of sedation for research procedures, we reviewed medical records between April 2017 and October 2019 from a natural history study for CLN3 (NCT03307304) and one for GM1 gangliosidosis (NCT00029965). Twenty-two CLN3 individuals underwent 28 anesthetic events (age median 11.0, IQR 8.4-15.3 years). Fifteen GM1 individuals had 19 anesthetic events (9.8, 7.1-14.7). All participants had the American Society of Anesthesiology classification of II (8/47) or III (39/47). Mean sedation durations were 186 (SD = 54; CLN3) and 291 (SD = 33; GM1) min. Individuals with GM1 (6/19, 31%) were more frequently prospectively intubated for sedation (CLN3 3/28, 11%). Minor adverse events associated with sedation occurred in 8/28 (28%, CLN3) and 6/19 (32%, GM1) individuals, frequencies within previously reported ranges. No major adverse clinical outcomes occurred in 47 anesthetic events in pediatric participants with either CLN3 or GM1 gangliosidosis undergoing research procedures. Sedation of pediatric individuals with rare neurometabolic diseases for research procedures is safe and allows for the collection of data integral to furthering their understanding and treatment.


Assuntos
Anestesia , Anestesiologia , Gangliosidose GM1 , Adolescente , Criança , Humanos , beta-Galactosidase , Gangliosídeo G(M1) , Gangliosidose GM1/genética , Lisossomos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Doenças Raras , Estudos Retrospectivos
16.
Balkan Med J ; 39(5): 345-350, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965426

RESUMO

Background: GM1 gangliosidosis is an autosomal recessive lysosomal storage disease caused by biallelic mutations in the GLB1 gene. Neurodegeneration, hypotonia, visceromegaly, macular cherry-red spots, skeletal dysplasia, and coarse and dysmorphic face are the major clinical features. Aims: To evaluate the demographic and clinical data of patients with GM1 gangliosidosis in a single center. Study Design: A retrospective clinical study. Methods: This study included patients followed at Hacettepe University Ihsan Dogramaci Children's Hospital Pediatric Metabolism Unit with the diagnosis of GM1 gangliosidosis between 1988 and 2021. Hospital records of the patients were reviewed for demographic, clinical, and laboratory findings. Results: Fourteen patients were included in the study and 10 (71.4%) were male. The age at onset of clinical symptoms was between 0 and 5 months, and the median time to diagnosis after the first symptom was 4.3 (0-13) months. Motor delay (54%) was the most common initial symptom. The median follow-up period was 14.8 (0.4-92.2) months. Twelve patients (85.7%) died, and all deaths occurred before the age of 24 months. The median survival was 21.3 (95% confidence interval, 15.5-24.9) months. Higher leukocyte beta-galactosidase activity correlated with later age at onset (ρ = 0.575), later age at diagnosis (ρ = 0.618), and longer diagnostic delay (ρ = 0.702) (ρ < 0.05). Conclusion: Median survival in patients with GM1 gangliosidosis is less than 24 months. Beta-galactosidase enzyme activity may be associated with clinical onset and time of diagnosis in these patients.


Assuntos
Gangliosidose GM1 , Diagnóstico Tardio , Feminino , Gangliosidose GM1/diagnóstico , Gangliosidose GM1/genética , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010656

RESUMO

GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal ß-galactosidase (ß-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death. No therapy is currently available for this lysosomal storage disease. Here, we describe a proof-of-concept preclinical study toward the development of enzyme replacement therapy (ERT) for GM1-gangliosidosis using a recombinant murine ß-Gal fused to the plant lectin subunit B of ricin (mß-Gal:RTB). We show that long-term, bi-weekly systemic injection of mß-Gal:RTB in the ß-Gal-/- mouse model resulted in widespread internalization of the enzyme by cells of visceral organs, with consequent restoration of enzyme activity. Most importantly, ß-Gal activity was detected in several brain regions. This was accompanied by a reduction of accumulated GM1, reversal of neuroinflammation, and decrease in the apoptotic marker caspase 3. These results indicate that the RTB lectin delivery module enhances both the CNS-biodistribution pattern and the therapeutic efficacy of the ß-Gal ERT, with the potential to translate to a clinical setting for the treatment of GM1-gangliosidosis.


Assuntos
Gangliosídeo G(M1) , Gangliosidose GM1 , Animais , Sistema Nervoso Central/metabolismo , Terapia de Reposição de Enzimas , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Lectinas/uso terapêutico , Camundongos , Distribuição Tecidual , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807262

RESUMO

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Assuntos
Gangliosidose GM1 , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , beta-Galactosidase/química
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(5): 537-541, 2022 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-35598274

RESUMO

OBJECTIVE: To explore the genotype-phenotype correlation of a case with GM1-gangliosidosis caused by compound heterogenic variants in GLB1. METHODS: Genomic DNA was extracted from peripheral blood samples from the patient and her parents. Trio-based whole-exome sequencing (WES) was performed for the family and suspected mutation was verified by Sanger sequencing. RESULTS: The proband, a 2-year-3-month old Chinese girl, presented with psychomotor deterioration, absent speech, intellectual disabilities and behavior problem. Trio-based WES has identified compound heterozygosity for 2 variants in the GLB1 gene: NM_000404.2:c.1343A>T, p.Asp448Val and c.1064A>C, p.Gln355Pro (GRCh37/hg19),which was inherited from the mother and father, respectively. Homozygous or compound heterozygous pathogenic variants in GLB1, encoding ß-galactosidase, are responsible for GM1-gangliosidosis,an autosomal recessive lysosomal storage disorder characterized by variable degrees of neurodegeneration and skeletal abnormalities. The p.Asp448Val variant has been classified as pathogenic for GM1 gangliosidosis in medical literatures for the reason that functional studies demonstrated that expression of the p.Asp448Val variant in COS-1 cells resulted in no detectable ß-galactosidase activity compared to wild type GLB1. The p.Gln355Pro variant has not been reported in literatures or database. The variant is highly conserved residue (PM1), and was not found in either the Genome Aggregation Database or the 1000 Genomes Project (PM2) and was predicted to have a deleterious effect on the gene product by multiple in silico prediction tools (PP3). Next, the ß-galactosidase activity of the patient's peripheral blood leukocytes was determined by fluorescent method. The result was 0.0 nmol/mg. It showed that the p.Gln355Pro variant also resulted in loss of ß-galactosidase activity, thus the variant was classified into clinical pathogenic variant. CONCLUSION: Our study expands the mutational spectrum of the GLB1 gene and provides genetic counseling for the family.


Assuntos
Gangliosidose GM1 , beta-Galactosidase , Povo Asiático/genética , China , Feminino , Gangliosídeo G(M1) , Gangliosidose GM1/genética , Humanos , Mutação , beta-Galactosidase/genética
20.
Curr Gene Ther ; 22(4): 352-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35249485

RESUMO

BACKGROUND: GM1 gangliosidosis (GM1) is an autosomal recessive disorder characterized by the deficiency of beta-galactosidase (ß-gal), a ubiquitous lysosomal enzyme that catalyzes the hydrolysis of GM1 ganglioside. OBJECTIVE: The study aims to explore the application of the AAV9-coGLB1 for effective treatment in a GM1 gangliosidosis mutant mouse model. METHODS: We designed a novel adeno-associated virus 9 (AAV9) vector expressing ß-gal (AAV9- coGLB1) to treat GM1 gangliosidosis. The vector, injected via the caudal vein at 4 weeks of age, drove the widespread and sustained expression of ß-gal for up to 32 weeks in the Glb1G455R/G455R mutant mice (GM1 mice). RESULTS: The increased levels of ß-gal reduced the pathological damage occurring in GM1 mice. Histological analyses showed that myelin deficits and neuron-specific pathology were reduced in the cerebral cortex region of AAV9-coGLB1-treated mice. Immunohistochemical staining showed that the accumulation of GM1 ganglioside was also reduced after gene therapy. The reduction of the storage in these regions was accompanied by a decrease in activated microglia. In addition, AAV9 treatment reversed the blockade of autophagic flux in GM1 mice. CONCLUSION: These results show that AAV9-coGLB1 reduces the pathological signs of GM1 gangliosidosis in a mouse model.


Assuntos
Gangliosidose GM1 , Animais , Sistema Nervoso Central , Dependovirus/genética , Modelos Animais de Doenças , Gangliosídeo G(M1) , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Gangliosidose GM1/terapia , Inflamação/genética , Inflamação/terapia , Lisossomos/genética , Lisossomos/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...